Continuous Random Variables (Cumulative Distributions) (From OCR 4768)

Q1, (Jan 2006, Q1i-iii)

Q1	$F(t) = 1 - e^{-t/3} (t > 0)$			
(i)	For median m , $\frac{1}{2} = 1 - e^{-m/3}$ $\therefore e^{-m/3} = \frac{1}{2} \Rightarrow -\frac{m}{3} = \ln \frac{1}{2} = -0.6931$	M1 M1	attempt to solve, here or for 90th percentile. Depends on previous M mark.	
	$\Rightarrow m = 2.079$	A1	W mark.	
	For 90 th percentile p , $0.9 = 1 - e^{-p/3}$ $\therefore e^{-p/3} = 0.1 \Rightarrow -\frac{p}{3} = \ln 0.1 = -2.3026$	MI		
	$\Rightarrow p = 6.908$	Al		5
(ii)	$f(t) = \frac{d}{dt} F(t)$ $= \frac{1}{2} e^{-t/3}$	MI		
	$\mu = \int_0^\infty \frac{1}{3} t e^{-t/3} dt$	A1 M1	(for t>0, but condone absence of this) Quoting standard result gets 0/3	
	$= \frac{1}{3} \left\{ \left[\frac{t e^{-t/3}}{-1/3} \right]_0^{\infty} + 3 \int_0^{\infty} e^{-t/3} dt \right\}$	M1	for the mean. attempt to integrate by parts	
	$= [0-0] + \left[\frac{e^{-t/3}}{-1/3}\right]_0^{\infty} = 3$	A1		5
(iii	$P(T > \mu) = [from \ cdf] \ e^{-\mu/3} = e^{-1}$	M1	[or via pdf]	\vdash
)	=0.3679	A1	ft c's mean (>0)	2

Q2, (Jun 2006, Q1i,ii)

	$f(x) = 12x^3 - 24x^2 + 12x,$ $0 \le x \le 1$			
(i)	$E(X) = \int_0^1 x f(x) dx$	M1	Integral for E(X) including limits (which may appear later).	
	$=12\left[\frac{x^5}{5}-2\frac{x^4}{4}+\frac{x^3}{3}\right]_0^1$	A1	Successfully integrated.	
	$=12\left[\frac{1}{5} - \frac{2}{4} + \frac{1}{3}\right] = 12 \times \frac{1}{30} = \frac{2}{5}$	A1	Correct use of limits leading to final answer. C.a.o.	
	For mode, $f'(x) = 0$	M1		
	$f'(x) = 12(3x^2 - 4x + 1) = 12(3x - 1)(x - 1)$ $f'(x) = 0 \text{ for } x = 1 \text{ and } x = \frac{1}{2}$	A1		
	Any convincing argument (e.g. $f''(x)$) that $\frac{1}{3}$	A1		6
	(and not 1) is the mode.			
(ii)	Cdf $F(x) = \int_0^x f(t) dt$ = $12\left(\frac{x^4}{4} - 2\frac{x^3}{3} + \frac{x^2}{2}\right)$	M1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen.	
	$=3x^4 - 8x^3 + 6x^2$	A1	/ Automotive right	
	ans and a second se		Or equivalent expression; condone absence of domain [0,1].	
	$F\left(\frac{1}{4}\right) = \frac{3}{256} - \frac{8}{64} + \frac{6}{16} = \frac{3 - 32 + 96}{256} = \frac{67}{256}$		- H	
	$F\left(\frac{1}{2}\right) = \frac{3}{16} - \frac{8}{8} + \frac{6}{4} = \frac{3 - 16 + 24}{16} = \frac{11}{16}$	B1	For all three; answers given; must show convincing working (such as common	
	$\mathbf{F}\left(\frac{3}{4}\right) = \frac{3 \times 81}{256} - \frac{8 \times 27}{64} + \frac{6 \times 9}{16} = \frac{243}{256}$		denominator)! Use of decimals is not acceptable.	3

Q3, (Jan 2007, Q1i-iv)

<u>in 2007, Q11-IV)</u>		•	-
$f(x) = k(1-x) \qquad 0 \le x \le 1$			
$\int_{0}^{1} k(1-x) dx = 1$ $\therefore k[x - \frac{1}{2}x^{2}]_{0}^{1} = 1$	M1	Integral of f(x), including limits (possibly implied later), equated to 1.	
$\therefore k = 2$	E4	Convincingly shows Bowers	
8218 122	EI		
Labelled sketch: straight line segment from (0,2) to (1,0).	G1 G1	Correct shape. Intercepts labelled.	4
$E(X) = \int_0^1 2x(1-x)dx$	M1	Integral for E(X) including limits (which may appear later).	
$= \left[x^2 - \frac{2}{3}x^3\right]_0^1 = \left(1 - \frac{2}{3}\right) - 0 = \frac{1}{3}$	A1		
$E(X^{2}) = \int_{0}^{1} 2x^{2} (1-x) dx$	M1	Integral for $E(\chi^2)$ including limits (which may appear later).	
[[[[[[[[[[[[[[[[[[[
$Var(X) = \frac{1}{6} - (\frac{1}{3})^{2}$ $= \frac{1}{18}$	A1	Convincingly shown. Beware printed answer.	5
$\mathbf{F}(x) = \int_0^x 2(1-t) \mathrm{d}t$	M1	Definition of cdf, including limits, possibly implied later. Some valid method must be seen.	
$= [2t - t^2]_0^x = (2x - x^2) - 0 = 2x - x^2$	A1	[for $0 \le x \le 1$; do not insist on this.]	
$P(X > \mu) = P(X > \frac{1}{3}) = 1 - F(\frac{1}{3})$	M1	For $1 - c$'s $F(\mu)$.	
$=1-(2\times\frac{1}{3}-(\frac{1}{3})^2)=1-\frac{5}{9}=\frac{4}{9}$	A1	ft c's $E(X)$ and $F(x)$. If answer only seen in decimal expect 3 d.p. or better.	4
$F(1-\frac{1}{\sqrt{2}})=2(1-\frac{1}{\sqrt{2}})-(1-\frac{1}{\sqrt{2}})^2$	M1	Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.	
$=2-\frac{2}{\sqrt{2}}-1+\frac{2}{\sqrt{2}}-\frac{1}{2}=\frac{1}{2}$	E1	Convincingly shown. Beware printed answer.	2
Alternatively:			
	M1	Form a quadratic equation	
		$F(m) = \frac{1}{2}$ and attempt to solve it. ft	
: m = 1 + 1		c's cdf provided it leads to a	
		quadratic.	
so $m=1-\frac{1}{\sqrt{2}}$	E1	Convincingly shown. Beware printed answer.	
	$\int_{0}^{1} k(1-x) dx = 1$ $\therefore k[x - \frac{1}{2}x^{2}]_{0}^{1} = 1$ $\therefore k(1 - \frac{1}{2}) - 0 = 1$ $\therefore k = 2$ Labelled sketch: straight line segment from (0,2) to (1,0). $E(X) = \int_{0}^{1} 2x(1-x) dx$ $= [x^{2} - \frac{2}{3}x^{3}]_{0}^{1} = (1 - \frac{2}{3}) - 0 = \frac{1}{3}$ $E(X^{2}) = \int_{0}^{1} 2x^{2}(1-x) dx$ $= [\frac{2}{3}x^{3} - \frac{2}{4}x^{4}]_{0}^{1} = (\frac{2}{3} - \frac{1}{2}) - 0 = \frac{1}{6}$ $Var(X) = \frac{1}{6} - (\frac{1}{3})^{2}$ $= \frac{1}{18}$ $F(x) = \int_{0}^{x} 2(1-t) dt$ $= [2t - t^{2}]_{0}^{x} = (2x - x^{2}) - 0 = 2x - x^{2}$ $P(X > \mu) = P(X > \frac{1}{3}) = 1 - F(\frac{1}{3})$ $= 1 - (2 \times \frac{1}{3} - (\frac{1}{3})^{2}) = 1 - \frac{5}{9} = \frac{4}{9}$ $F(1 - \frac{1}{\sqrt{2}}) = 2(1 - \frac{1}{\sqrt{2}}) - (1 - \frac{1}{\sqrt{2}})^{2}$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ $\therefore m^{2} - 2m + \frac{1}{2} = 0$ $\therefore m = 1 \pm \frac{1}{\sqrt{2}}$	$\int_{0}^{1} k(1-x) dx = 1$ $\therefore k[x - \frac{1}{2}x^{2}]_{0}^{1} = 1$ $\therefore k(1 - \frac{1}{2}) - 0 = 1$ $\therefore k = 2$ E1 Labelled sketch: straight line segment from (0,2) to (1,0). $E(X) = \int_{0}^{1} 2x(1-x) dx$ $= [x^{2} - \frac{2}{3}x^{3}]_{0}^{1} = (1 - \frac{2}{3}) - 0 = \frac{1}{3}$ $E(X^{2}) = \int_{0}^{1} 2x^{2}(1-x) dx$ $= [\frac{2}{3}x^{3} - \frac{2}{4}x^{4}]_{0}^{1} = (\frac{2}{3} - \frac{1}{2}) - 0 = \frac{1}{6}$ $Var(X) = \frac{1}{6} - (\frac{1}{3})^{2}$ $= \frac{1}{18}$ M1 $= [2t - t^{2}]_{0}^{x} = (2x - x^{2}) - 0 = 2x - x^{2}$ A1 $P(X > \mu) = P(X > \frac{1}{3}) = 1 - F(\frac{1}{3})$ $= 1 - (2 \times \frac{1}{3} - (\frac{1}{3})^{2}) = 1 - \frac{5}{9} = \frac{4}{9}$ M1 $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ Alternatively: $2m - m^{2} = \frac{1}{2}$ $\therefore m^{2} - 2m + \frac{1}{2} = 0$ $\therefore m = 1 \pm \frac{1}{\sqrt{2}}$	$\int_{0}^{1}k(1-x)\mathrm{d}x=1$ $\int_{0}^{1}k(1-x)\mathrm{d}x=1$ $\int_{0}^{1}k(1-x)\mathrm{d}x=1$ $\int_{0}^{1}k(1-x)\mathrm{d}x=1$ $\int_{0}^{1}k(1-x)\mathrm{d}x=1$ $\int_{0}^{1}k(1-x)\mathrm{d}x=1$ $\int_{0}^{1}k(1-x)\mathrm{d}x=1$ $\int_{0}^{1}2x(1-x)\mathrm{d}x=1$ $\int_{0}^{1}2x(1-x)\mathrm{d}x=1$ $\int_{0}^{1}2x^{2}(1-x)\mathrm{d}x=1$ $\int_{0}^{1}2x^{2}(1$

Q4, (Jun 2008, Q1a)

	$f(x) = k(20 - x)$ $0 \le x \le 20$			
(a) (i)	$\int_0^{20} k(20 - x) dx = \left[k \left(20x - \frac{x^2}{2} \right) \right]_0^{20} = k \times 200 = 1$	M1	Integral of f(x), including limits (which may appear later), set equal to 1. Accept a geometrical	
	$\therefore k = \frac{1}{200}$	A1	approach using the area of a triangle. C.a.o.	
	Straight line graph with negative gradient, in the first quadrant.	G1	J	
	Intercept correctly labelled (20, 0), with nothing extending beyond these points.	G1		
	Sarah is more likely to have only a short time to wait for the bus.	E1		5
(ii)	$Cdf F(x) = \int_0^x f(t)dt$ $= \frac{1}{200} \left(20x - \frac{x^2}{2} \right)$ $= \frac{1}{200} \left(x - \frac{x^2}{2} \right)$	M1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen.	
	$=\frac{x}{10}-\frac{x^2}{400}$	A1	Or equivalent expression; condone absence of domain [0, 20].	
	P(X > 10) = 1 - F(10) = 1 - (1 - 1/4) = 1/4	M1 A1	Correct use of c's cdf. f.t. c's cdf. Accept geometrical method, e.g area = ½(20 – 10)f(10), or	4
(iii)	Median time, m , is given by $F(m) = \frac{1}{2}$.	M1	Definition of median used, leading to the formation of a quadratic equation.	
	$\frac{m}{10} - \frac{m^2}{400} = \frac{1}{2}$ $m^2 - 40m + 200 = 0$ $m = 5.86$	M1	Rearrange and attempt to solve	
	∴ m = 5.86	A1	the quadratic equation. Other solution is 34.14; no explicit reference to/rejection of it is required.	3

Q5, (Jun 2009, Q4i-iii)

<u> </u>	$f(x) = \frac{2x}{\lambda^2} \text{for } 0 < x < \lambda \text{ , } \lambda > 0$			
(i)	f(x) > 0 for all x in the domain. $\int_0^{\lambda} \frac{2x}{\lambda^2} dx = \left[\frac{x^2}{\lambda^2}\right]_0^{\lambda} = \frac{\lambda^2}{\lambda^2} = 1$	E1 M1	Correct integral with limits. Shown equal to 1.	3
(ii)	$\mu = \int_0^{\lambda} \frac{2x^2}{\lambda^2} dx = \left[\frac{2x^3/3}{\lambda^2} \right]_0^{\lambda} = \frac{2\lambda}{3}$ $P(X < \mu) = \int_0^{\mu} \frac{2x}{\lambda^2} dx = \left[\frac{x^2}{\lambda^2} \right]_0^{\mu}$ $= \frac{\mu^2}{\lambda^2} = \frac{4\lambda^2/9}{\lambda^2} = \frac{4}{9}$ which is independent of λ .	M1 A1 M1	Correct integral with limits. c.a.o. Correct integral with limits. Answer plus comment. ft c's μ provided the answer does not involve λ .	4
(iii)	Given $E(X^2) = \frac{\lambda^2}{2}$ $\sigma^2 = \frac{\lambda^2}{2} - \frac{4\lambda^2}{9} = \frac{\lambda^2}{18}$	M1 A1	Use of $Var(X) = E(X^2) - E(X)^2$. c.a.o.	2

Q6, (Jun 2010, Q4i,ii)

<u>Q6, (10</u>	<u>In 2010, Q41,II)</u> │	1		1
	$f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$, where $\lambda > 0$.		Given $\int_0^\infty x^r e^{-\lambda x} dx = \frac{r!}{\lambda^{r+1}}$	
(i)	$\int_0^\infty \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_0^\infty \lambda \mathbf{e}^{-\lambda \mathbf{x}} d\mathbf{x}$ $= \left[-\mathbf{e}^{-\lambda \mathbf{x}} \right]_0^\infty$ $= \left(0 - (-\mathbf{e}^0) \right) = 1$	M1 M1	Integration of $f(x)$. Use of limits or the given result. Convincingly obtained (Answer given.)	
	<u>×</u>	G1 G1	Curve, with negative gradient, in the first quadrant only. Must intersect the <i>y</i> -axis. $(0, \lambda)$ labelled; asymptotic to x-axis.	[5]
(ii)	$E(X) = \int_0^\infty \lambda x e^{-\lambda x} dx$ $= \lambda \frac{1}{\lambda^2} = \frac{1}{\lambda}$ $E(X^2) = \int_0^\infty \lambda x^2 e^{-\lambda x} dx$ $= \lambda \frac{2}{\lambda^3} = \frac{2}{\lambda^2}$ $Var(X) = E(X^2) - E(X)^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$	M1 A1 M1 A1 M1	Correct integral. c.a.o. (using given result) Correct integral. c.a.o. (using given result) Use of $E(X^2) - E(X)^2$	
	λ (λ) λ	A1		[6]

Q7, (Jan 2013, Q2i,ii)

<u>Q7, (J</u>	an 2013, Q2i,ii)		
(i)	0.75	G1 G1 G1	Curve with positive gradient, through the origin and in the first quadrant only. Correct shape for an inverted parabola ending at maximum point. End point (2, 3/4) labelled.
		[3]	
(ii)	$E(X) = \frac{3}{16} \int_0^2 (4x^2 - x^3) dx$	M1	Correct integral for $E(X)$ with limits (which may appear later).
	$=\frac{3}{16}\left[\frac{4x^3}{3}-\frac{x^4}{4}\right]_0^2$	M1	Correctly integrated. Dep on previous M1.
	$=\frac{3}{16}\left\{ \left(\frac{32}{3}-\frac{16}{4}\right)-0\right\}$		
	$=\frac{5}{4}$		Limits used correctly to obtain PRINTED ANSWER (BEWARE) convincingly.
	4	A1	Condone absence of "-0".
	$E(X^2) = \frac{3}{16} \int_0^2 (4x^3 - x^4) dx$	M1	Correct integral for $E(X)$ with limits (which may appear later).
	$=\frac{3}{16}\left[x^4-\frac{x^5}{5}\right]_0^2$	M1	Correctly integrated. Dep on previous M1.
	$=\frac{3}{16}\left\{ \left(16-\frac{32}{5}\right)-0\right\}$		
	$=\frac{9}{5}$	A1	Limits used correctly to obtain result. Condone absence of "-0".
	$Var(X) = \frac{9}{5} - \left(\frac{5}{4}\right)^2 = \frac{19}{80}$	M1	Use of $Var(X) = E(X^2) - E(X)^2$.
	$sd = \sqrt{\frac{19}{80}} = 0.487(3)$	A1	cao

[8]

Q8, (Jun 2011, Q3)

11.00000000	<u>un 2011, Q3)</u>			
(i) (A)	1 (S(X))	M1 A1 A1	Increasing curve, through (0, 0), in first quadrant only. Asymptotic behaviour. Asymptote labelled; condone absence of axis labels.	3
(B)	For the UQ G(u) = 0.75 $\therefore \left(1 + \frac{u}{200}\right)^{-2} = \frac{1}{4} \therefore u = 200$ For the LQ G(l) = 0.25	M1 A1	Use of G(x) for either quartile. c.a.o.	
	$\therefore \left(1 + \frac{l}{200}\right)^{-2} = \frac{3}{4} \therefore l = 200 \left(\frac{2}{\sqrt{3}} - 1\right) = 30.94$ $\therefore IQR = 200 - 30.94 = 169(.06)$ For an outlier $x > UQ + 1.5 \times IQR = 200 + 1.5 \times 169$ $= 453(.58) \approx 454 \text{ (nearest hour)}$	M1 M1 M1 E1	c.a.o. UQ – LQ UQ +1.5 × IQR. Answer given; must be obtained genuinely.	6
(ii) (A)	$F(x) = \int_0^x \frac{1}{200} e^{\frac{-t}{200}} dt$ $= \left[-e^{\frac{-t}{200}} \right]_0^x = \left(-e^{\frac{-x}{200}} \right) - \left(-e^{\frac{-0}{200}} \right) = 1 - e^{\frac{-x}{200}}$	M1 A1 E1	Correct integral, including limits (which may be implied subsequently). Correctly integrated. Limits used. Answer given; must be shown convincingly. Condone the omission of x < 0 part. Allow use of "+ c" with F(0) = 0.	3
(B)	$P(X > 50) = 1 - F(50)$ $= e^{\frac{-50}{200}} = e^{-0.25}$	M1 E1	Use of 1 – F(x) Answer given: must be convincing. (= 0.7788(0))	2
(C)	$P(X > 400) = e^{\frac{-400}{200}} = 0.1353(35)$ $P(X > 450) = e^{\frac{-450}{200}} = 0.1053(99)$ $P(X > 450 \mid X > 400) = \frac{P(X > 450)}{P(X > 400)}$ $= \frac{e^{\frac{-450}{200}}}{e^{\frac{-400}{200}}} = e^{\frac{-50}{200}} = e^{-0.25} (= 0.7788)$	B1 B1 M1	Accept any form. Accept any form. Conditional probability. Not P(X > 50) × P(X > 400) unless clearly justified. Accept division of decimals, 3dp or better. Accept a.w.r.t. 0.778 or 0.779.	4
				18

Q9, (Jun 2012, Q4ii-v)

(ii)	Mean = $5/3$ $\therefore \lambda = 0.6$	B1	
39	10	[1]	
(iii)	$\mathbf{F}(t) = \int_0^t 0.6 \mathrm{e}^{-0.6x} \mathrm{d}x$	M1	Correct integral with limits (which may be implied subsequently). Allow use of "+ c" accompanied by a valid attempt to evaluate it.
	$= \left[-e^{-0.6x} \right]_0^t$	A1	Correctly integrated.
	$= \left[-e^{-0.6x} \right]_0^t$ $= \left(-e^{-0.6t} - (-e^0) \right) = 1 - e^{-0.6t}$	A1	Limits used or c evaluated correctly. Accept unsimplified form. If final answer is given in terms of λ then allow max M1A1A0.
		[3]	A second to the contract of th
(iv)	P(T > 1) = 1 - F(1)	M1	ft c's F(t).
900 / K	$=1-(1-e^{-0.6})=0.5488$	A1	cao Allow any exact form of the correct answer.
- 23	0	[2]	26
(v)	$F(m) = \frac{1}{2}$ $\therefore 1 - e^{-0.6m} = \frac{1}{2}$	Mi	Use of definition of median. Allow use of c 's $F(t)$.
	$\therefore e^{-0.6m} = \frac{1}{2} \qquad \therefore -0.6m = -\ln 2 \qquad \therefore m = \frac{\ln 2}{0.6}$	M1	Convincing attempt to rearrange to " $m = \dots$ ", to include use of logs.
	m = 1.155 (days)	A1	Cao obtained only from the correct F(t). Must be evaluated.
		100	Require 2 to 4 sf; condone 5.
		[3]	

Q10, (Jun 2014, Q4i-iii)

MathsRevision.com

ALev	ell
(iii)	
()	1
	1

Var $X = k \int_0^a x^3 dx + k \int_a^{2a} 2ax^2 - x^3 dx - a^2$
$k \left[\frac{x^4}{4} \right]_0^a + k \left[\frac{2ax^3}{3} - \frac{x^4}{4} \right]_a^{2a} - a^2$
$\frac{a^2}{4} + \frac{16a^2}{3} - 4a^2 - \frac{2a^2}{3} + \frac{a^2}{4} - a^2$
2

$$\frac{a^2}{4} + \frac{16a^2}{3} - 4a^2 - \frac{2a^2}{3} + \frac{a^2}{4} - a^2$$

$$\text{Var } X = \frac{a^2}{6}$$

Correct integral for $\mathbb{E} \sqrt[4]{2}$ including limits (which may appear later). M1

Correctly integrated (dependent on M1 above)

A1 cao [4]

MI

Q11, (Jun 2016, Q3i-iv)

i	$k \int_{-1}^{1} (1 - x^2) dx = 1 \ (\rightarrow k \left[x - \frac{x^3}{3} \right]_{-1}^{1} = 1 \)$
	$\rightarrow k = \frac{3}{4}$

M1 Correct integral including limits

M1 (const)×
$$k = 1$$

A1 cao

[3]

B1

[3] B1 General shape between -1 and +1 B1

Axes labelled with scales and intercepts (FT their k)

B1 Nothing outside |x| < 1

iii
$$E(X) = 0 \to V(X) = E(X^{2})$$

$$V(X) = \frac{3}{4} \int_{-1}^{1} (x^{2} - x^{4}) dx = \frac{3}{4} \left[\frac{x^{5}}{3} - \frac{x^{5}}{5} \right]_{-1}^{1}$$

$$= \frac{1}{5}$$

for
$$E(X) = 0$$

M1 for correct integral including limits

A1 cao (ignore mistakes in working) [3]

iv

$\frac{3}{4} \int_0^q (1 - x^2) \mathrm{d}x = \frac{1}{4}$
integration $=\frac{3}{4}\left[x-\frac{x^3}{3}\right]$
$\rightarrow q - \frac{q^3}{3} = \frac{1}{3}$ or $\rightarrow q^3 - 3q + 1 = 0$
g(0.345) = 0.006 $g(0.355) = -0.02$
Change of sign \rightarrow 0.345 < q < 0.355 So upper quartile = 0.35 to 2 dp

M1	Correct limits and equality
B1	f/t their k
Al	any correct simplified (3-term) cubic
M1	(allow correct alternative) If solving using calculator: state all three solutions
E1 [5]	must be explained clearly If solving by calculator: explain why only one works